首页 > 极客资料 博客日记

强化学习算法笔记之【DDPG算法】

2024-10-19 15:30:02极客资料围观15

本篇文章分享强化学习算法笔记之【DDPG算法】,对你有帮助的话记得收藏一下,看极客之家收获更多编程知识

强化学习笔记之【DDPG算法】


前言:

本文为强化学习笔记第二篇,第一篇讲的是Q-learning和DQN

就是因为DDPG引入了Actor-Critic模型,所以比DQN多了两个网络,网络名字功能变了一下,其它的就是软更新之类的小改动而已

本文初编辑于2024.10.6

CSDN主页:https://blog.csdn.net/rvdgdsva

博客园主页:https://www.cnblogs.com/hassle

博客园本文链接:

真 · 图文无关


原论文伪代码

  • 上述代码为DDPG原论文中的伪代码

需要先看:

Deep Reinforcement Learning (DRL) 算法在 PyTorch 中的实现与应用【DDPG部分】【没有在选择一个新的动作的时候,给policy函数返回的动作值增加一个噪音】【critic网络与下面不同】

深度强化学习笔记——DDPG原理及实现(pytorch)【DDPG伪代码部分】【这个跟上面的一样没有加噪音】【critic网络与上面不同】

【深度强化学习】(4) Actor-Critic 模型解析,附Pytorch完整代码【选看】【Actor-Critic理论部分】


如果需要给policy函数返回的动作值增加一个噪音,实现如下

def select_action(self, state, noise_std=0.1):
    state = torch.FloatTensor(state.reshape(1, -1))
    action = self.actor(state).cpu().data.numpy().flatten()
    
    # 添加噪音,上面两个文档的代码都没有这个步骤
    noise = np.random.normal(0, noise_std, size=action.shape)
    action = action + noise
    
    return action


DDPG 中的四个网络

注意!!!这个图只展示了Critic网络的更新,没有展示Actor网络的更新

  • Actor 网络(策略网络)
    • 作用:决定给定状态 ss 时,应该采取的动作 a=π(s)a=π(s),目标是找到最大化未来回报的策略。
    • 更新:基于 Critic 网络提供的 Q 值更新,以最大化 Critic 估计的 Q 值。
  • Target Actor 网络(目标策略网络)
    • 作用:为 Critic 网络提供更新目标,目的是让目标 Q 值的更新更为稳定。
    • 更新:使用软更新,缓慢向 Actor 网络靠近。
  • Critic 网络(Q 网络)
    • 作用:估计当前状态 ss 和动作 aa 的 Q 值,即 Q(s,a)Q(s,a),为 Actor 提供优化目标。
    • 更新:通过最小化与目标 Q 值的均方误差进行更新。
  • Target Critic 网络(目标 Q 网络)
    • 作用:生成 Q 值更新的目标,使得 Q 值更新更为稳定,减少振荡。
    • 更新:使用软更新,缓慢向 Critic 网络靠近。

大白话解释:

​ 1、DDPG实例化为actor,输入state输出action
​ 2、DDPG实例化为actor_target
​ 3、DDPG实例化为critic_target,输入next_state和actor_target(next_state)经DQN计算输出target_Q
​ 4、DDPG实例化为critic,输入state和action输出current_Q,输入state和actor(state)【这个参数需要注意,不是action】经负均值计算输出actor_loss

​ 5、current_Q 和target_Q进行critic的参数更新
​ 6、actor_loss进行actor的参数更新

action实际上是batch_action,state实际上是batch_state,而batch_action != actor(batch_state)

因为actor是频繁更新的,而采样是随机采样,不是所有batch_action都能随着actor的更新而同步更新

Critic网络的更新是一发而动全身的,相比于Actor网络的更新要复杂要重要许多


代码核心更新公式

\[target\underline{~}Q = critic\underline{~}target(next\underline{~}state, actor\underline{~}target(next\underline{~}state)) \\target\underline{~}Q = reward + (1 - done) \times gamma \times target\underline{~}Q.detach() \]

  • 上述代码与伪代码对应,意为计算预测Q值

\[critic\underline{~}loss = MSELoss(critic(state, action), target\underline{~}Q) \\critic\underline{~}optimizer.zero\underline{~}grad() \\critic\underline{~}loss.backward() \\critic\underline{~}optimizer.step() \]

  • 上述代码与伪代码对应,意为使用均方误差损失函数更新Critic

\[actor\underline{~}loss = -critic(state,actor(state)).mean() \\actor\underline{~}optimizer.zero\underline{~}grad() \\ actor\underline{~}loss.backward() \\ actor\underline{~}optimizer.step() \]

  • 上述代码与伪代码对应,意为使用确定性策略梯度更新Actor

\[critic\underline{~}target.parameters().data=(tau \times critic.parameters().data + (1 - tau) \times critic\underline{~}target.parameters().data) \\ actor\underline{~}target.parameters().data=(tau \times actor.parameters().data + (1 - tau) \times actor\underline{~}target.parameters().data) \]

  • 上述代码与伪代码对应,意为使用策略梯度更新目标网络

Actor和Critic的角色

  • Actor:负责选择动作。它根据当前的状态输出一个确定性动作。
  • Critic:评估Actor的动作。它通过计算状态-动作值函数(Q值)来评估给定状态和动作的价值。

更新逻辑

  • Critic的更新
    1. 使用经验回放缓冲区(Experience Replay)从中采样一批经验(状态、动作、奖励、下一个状态)。
    2. 计算目标Q值:使用目标网络(critic_target)来估计下一个状态的Q值(target_Q),并结合当前的奖励。
    3. 使用均方误差损失函数(MSELoss)来更新Critic的参数,使得预测的Q值(target_Q)与当前Q值(current_Q)尽量接近。
  • Actor的更新
    1. 根据当前的状态(state)从Critic得到Q值的梯度(即对Q值相对于动作的偏导数)。
    2. 使用确定性策略梯度(DPG)的方法来更新Actor的参数,目标是最大化Critic评估的Q值。

个人理解:

DQN算法是将q_network中的参数每n轮一次复制到target_network里面

DDPG使用系数\(\tau\)来更新参数,将学习到的参数更加soft地拷贝给目标网络

DDPG采用了actor-critic网络,所以比DQN多了两个网络


版权声明:本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:jacktools123@163.com进行投诉反馈,一经查实,立即删除!

标签:

相关文章

本站推荐

标签云