首页 > 极客资料 博客日记

C++17新特性探索:拥抱std::optional,让代码更优雅、更安全

2024-09-13 12:00:03极客资料围观24

这篇文章介绍了C++17新特性探索:拥抱std::optional,让代码更优雅、更安全,分享给大家做个参考,收藏极客之家收获更多编程知识

std::optional

  1. 背景
    在编程时,我们经常会遇到可能会返回/传递/使用一个确定类型对象的场景。也就是说,这个对象可能有一个确定类型的值也可能没有任何值。因此,我们需要一种方法来模拟类似指针的语义:指针可以通过 nullptr来表示没有值。解决方法是定义该对象的同时再定义一个附加的 bool类型的值作为标志来表示该对象是否有值。std::optional<>提供了一种类型安全的方式来实现这种对象。
  2. 占用内存大小
    可选对象所需的内存等于内含对象的大小加上一个 bool类型的大小。因此,可选对象一般比内含对象大一个字节(可能还要加上内存对齐的空间开销)。可选对象不需要分配堆内存,并且对齐方式和内含对象相同。
#include <iostream>
#include <optional>

// 定义一个没有默认构造函数的类
class MyClass {
public:
    explicit MyClass(int value) : data(value) {}
    ~MyClass() {}

    int getData() const {
        return data;
    }

private:
    int data;
};

// 输出 std::optional 是否包含值
void check_optional_value(std::optional<MyClass>& opt) {
    if (opt) {
        std::cout << "Value present: " << opt->getData() << std::endl;
    } else {
        std::cout << "No value present." << std::endl;
    }
}

int main() {
    // 创建一个没有值的 std::optional<MyClass>
    std::optional<MyClass> opt1;
    check_optional_value(opt1);

    // 创建一个有值的 std::optional<MyClass>
    std::optional<MyClass> opt2{MyClass(42)};
    check_optional_value(opt2);

    // 尝试通过 emplace 添加值
    opt1.emplace(24);
    check_optional_value(opt1);

    // 尝试通过 operator= 添加值
    opt1 = MyClass(56);
    check_optional_value(opt1);

    return 0;
}

输出:
Size of i: 4 bytes
Size of St8optionalIiE: 8 bytes
Size of 7MyClass: 4 bytes
Size of St8optionalI7MyClassE: 8 bytes

然而,可选对象并不是简单的等价于附加了bool标志的内含对象。例如,在没有值的情况下,将不会调用内含对象的构造函数(通过这种方式,没有默认构造函数的内含类型也可以处于有效的默认状态)。

3.语义
和 std::variant<>、std::any一样,可选对象有值语义。也就是说,拷贝操作会被实现为深拷贝:将创建一个新的独立对象,新对象在自己的内存空间内拥有原对象的标记和内含值(如果有的话)的拷贝。拷贝一个无内含值的 std::optional<>的开销很小,但拷贝有内含值的 std::optional<>的开销约等于拷贝内含值的开销。另外,std::optional<>对象也支持 move语义。

4.应用
(1)std::optional<>模拟了一个可以为空的任意类型的实例。它可以被用作成员、参数、返回值等。
下面的示例程序展示了将 std::optional<>用作返回值的一些功能:

#include <optional>
#include <string>
#include <iostream>

// 如果可能的话把string转换为int:
std::optional<int> asInt(const std::string& s)
{
    try {
        return std::stoi(s);
    }
    catch (...) {
        return std::nullopt;
    }
}

int main()
{
    for (auto s : {"42", "  077", "hello", "0x33"}) {
        // 尝试把s转换为int,并打印结果:
        std::optional<int> oi = asInt(s);
        if (oi.has_value()) {
            std::cout << "convert '" << s << "' to int: " << oi.value() << "\n";
        }
        else {
            std::cout << "can't convert '" << s << "' to int\n";
        }
    }
}

(2) 另一个使用 std::optional<>的例子是传递可选的参数和设置可选的数据成员:

#include <optional>
#include <string>
#include <iostream>

class Name
{
private:
    std::string first;
    std::optional<std::string> middle;
    std::string last;
public:
    Name (std::string f, std::optional<std::string> m, std::string l)
          : first{std::move(f)}, middle{std::move(m)}, last{std::move(l)} {
    }
    friend std::ostream& operator << (std::ostream& strm, const Name& n) {
        strm << n.first << ' ';
        if (n.middle) {
            strm << *n.middle << ' ';
        }
        return strm << n.last;
    }
};

int main()
{
    Name n{"Jim", std::nullopt, "Knopf"};
    std::cout << n << '\n';

    Name m{"Donald", "Ervin", "Knuth"};
    std::cout << m << '\n';
}

5.std::optional<>类型和操作
(1)std::optional<>类型标准库在头文件 中以如下方式定义了 std::optional<>类:
namespace std {
template class optional;
}
另外还定义了下面这些类型和对象:
• std::nullopt_t类型的 std::nullopt,作为可选对象无值时候的“值”。
• 从 std::exception派生的 std::bad_optional_access异常类,当无值时候访问值将会抛出该异常。
可选对象还使用了 头文件中定义的 std::in_place对象(类型是 std::in_place_t)来支持用多个参数初始化可选对象(见下文)。
(2)std::optional<>的操作
表std::optional的操作列出了 std::optional<>的所有操作:

#include <iostream>
#include <optional>
#include <variant>
#include <vector>
#include <set>
#include <map>
#include <string>
#include <cmath>
#include <functional>
#include <cassert>
#include <complex>


// 使用命名空间简化代码
using namespace std::string_literals;

// 示例 1:构造 std::optional
void construct_optional() {
    std::optional<int> o1; // 不含有值
    assert(!o1.has_value());

    std::optional<int> o2(std::nullopt); // 显式表示不含有值
    assert(!o2.has_value());

    std::optional o3{42}; // 推导出 std::optional<int>
    assert(o3.has_value());
    assert(*o3 == 42);

    std::optional o4{"hello"}; // 推导出 std::optional<const char*>
    assert(o4.has_value());
    assert(*o4 == "hello");

    std::optional o5{"hello"s}; // 推导出 std::optional<std::string>
    assert(o5.has_value());
    assert(*o5 == "hello");

    // 用多个参数初始化可选对象
    std::optional<std::complex<double>> o6{std::in_place, 3.0, 4.0};
    assert(o6.has_value());
    assert(o6->real() == 3.0 && o6->imag() == 4.0);

    // 使用 std::make_optional
    auto o13 = std::make_optional(3.0); // std::optional<double>
    assert(o13.has_value());
    assert(*o13 == 3.0);

    auto o14 = std::make_optional("hello"); // std::optional<const char*>
    assert(o14.has_value());
    assert(*o14 == "hello");

    auto o15 = std::make_optional<std::complex<double>>(3.0, 4.0);
    assert(o15.has_value());
    assert(o15->real() == 3.0 && o15->imag() == 4.0);
}

// 示例 2:访问值
void access_optional_value() {
    std::optional<std::pair<int, std::string>> o{std::make_pair(42, "hello")};
    assert(o.has_value());
    assert(o->first == 42);
    assert(o->second == "hello");

    std::optional<std::string> o2{"hello"};
    assert(o2.has_value());
    assert(*o2 == "hello");

    // 当没有值时访问会导致未定义行为
    o2 = std::nullopt;
    assert(!o2.has_value());
    // std::cout << *o2 << std::endl; // 未定义行为
}

// 示例 3:使用 value_or
void use_value_or() {
    std::optional<std::string> o{"hello"};
    std::cout << o.value_or("NO VALUE") << std::endl; // 输出 "hello"

    o = std::nullopt;
    std::cout << o.value_or("NO VALUE") << std::endl; // 输出 "NO VALUE"
}

// 示例 4:比较
void compare_optionals() {
    std::optional<int> o0;
    std::optional<int> o1{42};
    assert(o0 == std::nullopt);
    assert(!(o0 == 42));
    assert(o0 < 42);
    assert(!(o0 > 42));
    assert(o1 == 42);
    assert(o0 < o1);
    assert(!(o0 > o1));

    std::optional<unsigned> uo;
    assert(uo < 0);
    assert(uo < -42);

    std::optional<bool> bo;
    assert(bo < false);

    std::optional<int> o2{42};
    std::optional<double> o3{42.0};
    assert(o2 == 42);
    assert(o3 == 42);
    assert(o2 == o3);
}

// 示例 5:修改值
void modify_optional_value() {
    std::optional<std::complex<double>> o; // 没有值
    std::optional<int> ox{77}; // optional<int>,值为77
    o = 42; // 值变为 complex(42.0, 0.0)
    assert(o.has_value());
    assert(o->real() == 42.0 && o->imag() == 0.0);

    o = std::complex<double>{9.9, 4.4}; // 值变为 complex(9.9, 4.4)
    assert(o.has_value());
    assert(o->real() == 9.9 && o->imag() == 4.4);

    o = ox; // OK,因为 int 转换为 complex<double>
    assert(o.has_value());
    assert(o->real() == 77.0 && o->imag() == 0.0);

    o = std::nullopt; // o 不再有值
    assert(!o.has_value());

    o.emplace(5.5, 7.7); // 值变为 complex(5.5, 7.7)
    assert(o.has_value());
    assert(o->real() == 5.5 && o->imag() == 7.7);

    o.reset(); // o 不再有值
    assert(!o.has_value());

    o = std::complex<double>{88.0, 0.0}; // OK:值变为 complex(88.0, 0.0)
    assert(o.has_value());
    assert(o->real() == 88.0 && o->imag() == 0.0);

    o = std::complex<double>{1.2, 3.4}; // OK:值变为 complex(1.2, 3.4)
    assert(o.has_value());
    assert(o->real() == 1.2 && o->imag() == 3.4);
}

// 示例 6:使用 lambda 初始化 set
void initialize_set_with_lambda() {
    auto sc = [](int x, int y) {
        return std::abs(x) < std::abs(y);
    };

    std::optional<std::set<int, decltype(sc)>> o8{std::in_place,
                                                   std::initializer_list<int>{4, 8, -7, -2, 0, 5},
                                                   sc};
    assert(o8.has_value());
    assert(o8->size() == 6);
}

int main() {
    construct_optional();
    access_optional_value();
    use_value_or();
    compare_optionals();
    modify_optional_value();
    initialize_set_with_lambda();
    return 0;
}

6.注意
(1)value()和 value_or()
value()和 value_or()之间有一个需要考虑的差异:4 value_or()返回值,而 value()返回引用。这意味着如下调用:
std::cout << middle.value_or("");
和:
std::cout << o.value_or("fallback");
都会暗中分配内存,而 value()永远不会。
然而,当在临时对象 (rvalue)上调用 value_or()时,将会移动走内含对象的值并以值返回,而不是调用拷贝函数构造。这是唯一一种能让 value_or()适用于 move-only的类型的方法,因为在左值 (lvalue)上调用的 value_or()的重载版本需要内含对象可以拷贝。
因此,上面例子中效率最高的实现方式是:
std::cout << o ? o‐>c_str() : "fallback";
而不是:
std::cout << o.value_or("fallback");
value_or()是一个能够更清晰地表达意图的接口,但开销可能会更大一点。
(2)bool 类型或原生指针的可选对象
将可选对象用作 bool值时使用比较运算符会有特殊的语义。如果内含类型是 bool或者指针类型的话这可能导致令人迷惑的行为。例如:
std::optional ob{false}; // 值 为false
if (!ob) ... // 返 回false
if (ob == false) ... // 返 回true
std::optional<int*> op{nullptr};
if (!op) ... // 返 回false
if (op == nullptr) ... // 返 回true


版权声明:本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:jacktools123@163.com进行投诉反馈,一经查实,立即删除!

标签:

相关文章

本站推荐

标签云