首页 > 极客资料 博客日记

题解:AT_arc116_b [ARC116B] Products of Min-Max

2024-09-08 22:00:06极客资料围观24

极客之家推荐题解:AT_arc116_b [ARC116B] Products of Min-Max这篇文章给大家,欢迎收藏极客之家享受知识的乐趣

在题库里面乱翻,就翻到了。

因为在这道题里面子序列不需要考虑元素顺序,所以原序列无论是什么顺序都不会影响答案。

所以先把元素按照从大到小的顺序排列,然后考虑每个元素的贡献。

在当前序列中,对于元素 \(a_i\),不妨设其为最小值,并去寻找它能作为哪些序列的最小值。容易发现它作为最小值的时候只能和 \(1\sim i\) 中的元素产生贡献。

具体的,对于当前从 \(1\sim i\) 中选择的 \(a_j\),如果令其为最大值,那么由 \(a_i\)\(a_j\) 这两个值作为最值的序列元素一定都在 \(j\sim i\) 之间,学过集合的同学都知道,这样的序列显然有 \(2^{i-j-1}\) 个。

这样我们就可以得到一个 \(\mathcal{O}(n^2)\) 的解法,如下:

\[\sum_{i=1}^{n}(a_i\times(\sum_{j=1}^{i}(a_j\times 2^{i-j-1}))) \]

由于 \(i-j-1\) 中会出现负数,我们稍微变一下式子可以得到:

\[\sum_{i=1}^{n}(a_i\times(\sum_{j=1}^{i-1}(a_j\times 2^{i-j-1})+a_i)) \]

但是这样显然还不够,于是我们可以
\(j\) 的枚举进行优化。容易想到预处理。

我们用一个中间变量 \(sum\) 表示第二个括号里面的值。每次计算过答案以后,我们让 \(sum\gets sum\times 2+a_i\) 即可。

记得取模。

提交记录


版权声明:本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:jacktools123@163.com进行投诉反馈,一经查实,立即删除!

标签:

相关文章

本站推荐

标签云