首页 > 极客资料 博客日记
DP 详解
2024-10-27 15:30:02极客资料围观16次
DP 概述
DP(Dynamic programming,全称动态规划),是一种基于分治,将原问题分解为简单子问题求解复杂问题的方法。
动态规划的耗时往往远少于朴素(爆搜)解法。
动态规划 and 递归
之前说过,动态规划也是分治思路,而递归更是传统的分治思路,但时间复杂度却大相径庭,为什么呢?
动态规划是 自顶向上 思想,而递归是 自顶向下 解法。
自顶向上 and 自顶向下?
自顶向上
意思很简单,从下往上推导:\(f(1) \rightarrow f(2) \rightarrow \dots \rightarrow f(n - 1) \rightarrow f(n)\)。
这也是为什么 动态规划算法 脱离了 递归 的函数,改用循环迭代推到的原因。
自顶向下
反过来,自顶向下就是从上往下推,触底后在将结果返回回来。
\(f(n) \rightarrow f(n - 1) \rightarrow \dots \rightarrow f(2) \rightarrow f(1) \rightarrow f(2) \rightarrow f(3) \rightarrow \dots \rightarrow f(n - 1) \rightarrow f(n)\)
这也是为什么递归比动态规划时间复杂度高的多的原因。
我们可以看出,动态规划更像是递推算法的 plus 版。
状态转移方程
状态转移方程,就是如何将子问题转移至父亲问题的公式。
在简单 DP 中,转移方程可以直接套用至 dfs, bfs 等爆搜算法。
DP 最难的部分就是列出状态转移方程,如果没有状态转移方程,一切都白搭。
例:设 \(f_i\) 为数列第 \(i\) 为的数,斐波那契数列的状态转移方程为 \(f_i = f_{i - 1} + f_{i - 2}\)。
DP 如下:
f[1] = 1;
f[2] = 1;
for (int i = 3; i <= n; i++)
f[i] = f[i - 1] + f[i - 2]; // 转移方程
cout << f[n];
同样的,我们可以将转移方程套用在递归暴力上:
int f(int n)
{
if (n == 1 || n == 2)
return 1;
return f(n - 1) + f(n - 2); // 转移方程
}
动态规划要素
-
最优子结构:问题的最优解 包含 子问题最优解。即为:局部最优解 = 全局最优解。
-
无后效性:
-
在推导后面状态时,仅在意前面状态数值,不在意是如何推导出来的。
-
某状态确定后,不会因为后面的决策而改变前面的决策。
-
-
重叠子问题:不同的决策到达相同的状态时可能产生重复的状态,为了避免不必要的计算,我们通常使用 记忆化搜索(在计算出新状态时将它存储起来一遍下次使用)来解决,这也是最经典的 空间换时间。
不满足这三点你还想 DP?想 peach 呢?
状态的定义
前言:空间换时间
很简单的名字,即为使用空间的代价来确保不会超时。
状态?
状态,通俗来讲就是你 \(f_{xxx}\) 代表的是什么。比如斐波那契数列中 \(f_i\) 代表的就是第 \(i\) 为是什么。
对于状态:
-
状态越多,表示的信息越多,空间越大。
-
反之,状态越少,表示的信息越少,空间越小。
在我们状态定义时,可能有这些情况:
\(部分情况 \begin{cases} 状态太少?\begin{cases} 信息量太少 & 无解 \\\\ 信息量太少 & 不满足动态规划要素 \end{cases} \\\\ 状态太多? \begin{cases} 空间太大 & MLE \\\\ 需要太多时间更新状态 & TLE \end{cases} \end{cases}\)
所以,状态 and 状态转移方程时整个动态规划中最最最难的部分,想清楚这两点,这题也就解出来了。
参考资料
https://zh.wikipedia.org/wiki/动态规划
五大基本算法之动态规划算法 DP dynamic programming
例题
例题一思路
纯 DP
没看数据:好一个 dfs!
注:两种情况
-
拿本物品
-
3 倍奖金?
-
1 倍奖金?
-
-
不拿本物品
ll dfs(int i, int now, ll cnt)
{
if (i == n + 1)
return cnt;
if (!((now + 1) % 3) && ((now + 1) >= 3))
return max(dfs(i + 1, now + 1, cnt + (a[i] * 3)), dfs(i + 1, now, cnt));
else
return max(dfs(i + 1, now + 1, cnt + a[i]), dfs(i + 1, now, cnt));
}
我们看题面,一眼看出的状态为:\(f_i\) 表示前 \(i\) 个物品获得的最大奖金。
但是,我们发现不满足无后效性。
根据上述方法,我们尝试使用空间的代价来优化。
将状态改为:\(f_{i, j}\) 表示前 \(i\) 个物品,当前物品数取余 \(3\) 为 \(j\) 时获得的最大奖金。
\(f{i, j} = \begin{cases} j = 0 \begin{cases} i \ge 3 \begin{cases} f_{i - 1, 0} & 不拿 \\\\ f_{i - 1, 2} + a_i \times 3 & 拿 \end{cases} \\\\ f_{i - 1, 0} & 没有到 3 个,不存在这种情况。 \end{cases} \\\\ j = 1 \begin{cases} f_{i - 1, 1} & 不拿 \\\\ f_{i - 1, 0} + a[i] & 拿 \end{cases} \\\\ j = 2 \begin{cases} i \ge 2 \begin{cases} f_{i - 1, 2} & 不拿 \\\\ f_{i - 1, 1} + a_i & 拿 \end{cases} \\\\ f_{i - 1, 2} & 没有至少 2 个物品,没有这种情况。 \end{cases} \end{cases}\)
完整代码为:
#include <bits/stdc++.h>
using namespace std;
#define ll long long
int n;
ll a[100005];
/*
20PTS
ll dfs(int i, int now, ll cnt)
{
if (i == n + 1)
return cnt;
if (!((now + 1) % 3) && ((now + 1) >= 3))
return max(dfs(i + 1, now + 1, cnt + (a[i] * 3)), dfs(i + 1, now, cnt));
else
return max(dfs(i + 1, now + 1, cnt + a[i]), dfs(i + 1, now, cnt));
}
*/
ll f[100005][3];
ll ans;
int main()
{
cin >> n;
for (int i = 1; i <= n; i++)
cin >> a[i];
// cout << dfs(1, 0, 0) << "\n";
for (int i = 1; i <= n; i++)
{
f[i][0] = f[i - 1][0];
f[i][1] = f[i - 1][1];
f[i][2] = f[i - 1][2];
if (i >= 3)
f[i][0] = max(f[i][0], f[i - 1][2] + (a[i] * 3));
f[i][1] = max(f[i][1], f[i - 1][0] + a[i]);
if (i >= 2)
f[i][2] = max(f[i][2], f[i - 1][1] + a[i]);
ans = max(ans, f[i][0]);
ans = max(ans, f[i][1]);
ans = max(ans, f[i][2]);
}
cout << ans << "\n";
return 0;
}
首先,我们欣赏一下原出题人的提示。
例题二前言:分类讨论
在看了许多不当人的讲解后,我浓缩出:分类讨论就是分类 --> 讨论!分类讨论就是将问题通过不同的结果 / 形式 / 不同点分成几类逐个解决。
例题二思路
既然说到分类讨论我们先来分个类。
\(\max(\sum_{i = 1}^{N} A_i) = \begin{cases} C > 0 & \max(\sum_{i = L}^{R} A_i) \times C \\\\ C < 0 & \min(\sum_{i = L}^{R} A_i) \times C \end{cases}\)
最大最小怎么使用 \(O(N)\) 求?Bingo!最大 / 最小 子段和即可。
最后比一下就好了。
完整 Code:
#include <bits/stdc++.h>
using namespace std;
#define ll long long
int n;
ll c;
ll a[100005];
ll solve()
{
ll original_sum = 0;
for (int i = 1; i <= n; ++i)
original_sum += a[i];
ll dp_max[100005], dp_min[100005];
dp_max[1] = a[1];
dp_min[1] = a[1];
ll maxx = dp_max[1];
ll minn = dp_min[1];
for (int i = 2; i <= n; i++)
{
dp_max[i] = max(a[i], dp_max[i - 1] + a[i]);
dp_min[i] = min(a[i], dp_min[i - 1] + a[i]);
maxx = max(maxx, dp_max[i]);
minn = min(minn, dp_min[i]);
}
ll res = max((c - 1) * maxx, (c - 1) * minn);
ll ans = original_sum + res;
return ans;
}
int main()
{
cin >> n >> c;
for (int i = 1; i <= n; ++i)
cin >> a[i];
cout << solve() << endl;
return 0;
}
标签:
上一篇:2024 CSP 游记
下一篇:Java学习十六—掌握注解:让编程更简单
相关文章
最新发布
- Nuxt.js 应用中的 prerender:routes 事件钩子详解
- 【问题解决】Tomcat由低于8版本升级到高版本使用Tomcat自带连接池报错无法找到表空间的问题
- 【FAQ】HarmonyOS SDK 闭源开放能力 —Vision Kit
- 六、Spring Boot集成Spring Security之前后分离认证流程最佳方案
- 《JVM第7课》堆区
- .NET 8 高性能跨平台图像处理库 ImageSharp
- 还在为慢速数据传输苦恼?Linux 零拷贝技术来帮你!
- 刚毕业,去做边缘业务,还有救吗?
- 如何避免 HttpClient 丢失请求头:通过 HttpRequestMessage 解决并优化
- 让性能提升56%的Vue3.5响应式重构之“版本计数”